Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Wireless local area networks (WLANs) are a key component of the telecommunications infrastructure in our society. While many solutions have been produced to improve their downlink throughput, the techniques for enhancing their uplink throughput remain limited. The stagnation can be attributed to the lack of fine-grained inter-node synchronization due to the hardware limitation of most devices. In this paper, we present an uplink distributed multiple-input-and-multiple-output scheme (termed UD-MIMO) for WLANs to enable concurrent uplink transmission in the absence of fine-grained inter-node synchronization. The enabling technique behind UD-MIMO is a practical solution to decoding uplink packets from asynchronous users. UD-MIMO makes it possible for WLANs to significantly improve their uplink throughput while not requiring tight internode synchronization. We have built a prototype of UD-MIMO on a wireless testbed and demonstrate its compatibility with commercial off-the-shelf Atheros 802.11 client devices (with modified Linux driver). Our experimental results show that, for a WLAN with 8 APs in a conference room, UD-MIMO offers 3.4× throughput compared to interference-avoidance approach.more » « less
-
null (Ed.)Current data-driven intelligent transportation systems are mainly reliant on IEEE 802.11p to collect and exchange information. Despite promising performance of IEEE 802.11p in providing low-latency communications, it is still vulnerable to jamming attacks due to the lack of a PHY-layer countermeasure technique in practice. In this paper, we propose JammingBird, a novel receiver design that tolerates strong constant jamming attacks. The enablers of JammingBird are two MIMO-based techniques: Jamming-resistant synchronizer and jamming suppressor. Collectively, these two new modules are able to detect, synchronize, and recover desired signals under jamming attacks, regardless of the PHY-layer technology employed by the jammers. We have implemented JammingBird on a vehicular testbed and conducted extensive experiments to evaluate its performance in three common vehicular scenarios: Parking lots (0~15 mph), local traffic areas (25~45 mph), and highways (60~70 mph). In our experiments, while the jamming attacks degrade the throughput of conventional 802.11p-based receivers by 86.7%, JammingBird maintains 83.0% of the throughput on average. Experimental results also show that JammingBird tolerates the jamming signals with 25 dB stronger power than the desired signals.more » « less
An official website of the United States government
